Om Globeteam

Sådan kommer du i gang med machine learning

Som beskrevet i Globeteams føljeton ”Få værdi af virksomhedens data med machine learning”, så er machine learning en teknologi, som åbner mange nye og spændende muligheder, men samtidig kan alle mulighederne betyde, at det kan være svært at finde ud af, hvordan man kommer i gang med at arbejde med machine learning.

Denne gang opstiller Martin Strandbygaard tre simple skridt til at skabe nye projekter med machine learning:

  1. Forstå, om machine learning kan anvendes og skabe værdi
  2. Start småt, og arbejd videre derfra
  3. Inddrag forretningen, og kommuniker resultaterne

Forstå problemet — og forstå om machine learning kan løse problemet

Vi anbefaler, at I altid starter med at identificere behovet og de mulige problemstillinger, som I håber på at løse med machine learning, samt hvilke fordele I ønsker at opnå med løsningen. På den måde adskiller projekter med machine learning sig ikke fra andre projekter.

Det kan virke fristende at kaste sig ud i at arbejde med en masse spændende værktøjer med imponerende funktionalitet, men det hele kan ende med at være spildt, hvis det viser sig, at machine learning ikke er den rette løsning på virksomhedens egentlige problemstilling. Eller hvis det viser sig, at udfordringen kunne være løst og gevinstrealiseringen opnået mindst lige så godt med et af de simple “machine learning-værktøjer”, de fleste organisationer allerede råder over, som f.eks. Microsoft Excel.

Start småt, og arbejd videre derfra

Når I så har et klart billede af den problemstilling, I vil arbejde med, og hvordan machine learning passer på den problemstilling, så anbefaler vi, at I starter helt simpelt og gradvist bygger løsningen op.

I stedet for at bygge clustre med mange servere og kaste sig ud i at træne komplekse deep learning-algoritmer med hundredvis af gigabyte data, så er det ofte bedre — og ikke mindst meget mere realistisk og tilgængeligt — at starte med et lille udtræk af de data, der allerede er til rådighed i virksomheden. F.eks. gennem eksisterende BI-løsninger og eksperimentere med dem i f.eks. R eller Excel.

Hvis I ikke i det små kan demonstrere, at machine learning kan løse en udfordring, så er det heller ikke sandsynligt, at store, komplekse systemer giver løsningen. Rigtig mange udfordringer løses fint med enkle machine learning-teknikker som logaritmisk regression.

Anvendelse af machine learning er en iterativ proces, hvor man hele tiden bygger videre på det, man har, og forfiner løsningen. Når I har skabt de første synlige resultater med en simpel løsning, så kan I derefter udvide den med stadig større og mere komplekse systemer.

Inddrag forretningen, og kommuniker resultaterne

At kommunikere resultaterne på en klar, tydelig og forståelig måde er særligt vigtigt med et machine learning-projekt.

Machine learning-projekter kræver et stort committent, hvad angår tid og ressourcer, og det er derfor vigtigt at synliggøre, hvordan det skaber værdi.

Men endnu vigtigere er det at skabe tryghed i resten af organisationen, for at de resultater, der skabes, er rigtige og pålidelige i den sammenhæng, de skal bruges. Machine learning giver ofte anderledes måder at løse en problemstilling på, og det skaber en naturlig modstand i resten af organisationen, hvis den ikke har været med på hele “rejsen”.

Selv om man f.eks. kan påvise, at forebyggende vedligehold af målecensorer – der er baseret på en machine learning-algoritme og trænet på logdata og historisk information om fejl – bedre kan betale sig, end det kan at udskifte målecensorer, når de fejler, så kan det være meget svært at overbevise resten af organisationen om, hvis det kommunikeres reaktivt.

Globeteam hjælper vores kunder med at skabe værdi gennem data

Machine learning er en kompleks og meget specialiseret teknologi, og der vil opstå en lang række spørgsmål undervejs i projektet. Det kan f.eks. være i forhold til, hvordan I får opbygget de nødvendige kompetencer, hvordan I bygger en infrastruktur, der skalerer, og hvordan I kommer i gang med at indkøbe løsninger.

I Globeteam kan vi hjælpe med hele processen omkring rådgivning og implementering, så I får præcis den løsning, der er bedst for jer — og får den implementeret korrekt.

I næste indlæg kan du læse mere om, hvordan I med en cloud-baseret løsningsmodel hurtigt og kosteffektivt kommer i gang med at høste værdi af virksomhedens data.

 

Kontakt

Martin Strandbygaard
Mobil: +45 2326 0772
E-mail: mas@globeteam.com

 

Nyheder


Koncepter

Adgangsstyring

Opnå effektiviseringsgevinster og styrk tilgængeligheden af dine digitale services ved at give medarbejdere og kunder et samlet login til alle relevante applikationer.
Cases

Lifetime – Single sign-on med Facebook

Lifetime er en af Storbritanniens største udbydere af offentligt støttede uddannelses- og træningsforløb til […]

Globeteam tilbyder ydelser inden for og på tværs af tre hovedområder

Business model

skab sammenhæng mellem it og forretning

Globeteam hjælper dig med at optimere værdien af dine it-løsninger ved at sikre, at de understøtter forretningens

strategi og vision

Optimer og moderniser din
IT-INFRASTRUKTUR 

Globeteam sikrer dig en velfungerende it-infrastruktur, så du opnår en mere stabil drift og øget medarbejdereffektivitet

understøt forretningen med en skræddersyet it-løsning

Globeteam tilbyder assistance til at udvikle eller tilpasse it-løsninger, som møder forretningens specifikke behov


Er du Interesseret i at høre mere?

Navn:

E-mail:

Virksomhed:

Emne :

Optimer din forretning og dine it-investeringer

Er du interesseret i at vide mere om Globeteams ydelser, og hvordan vi kan hjælpe netop din forretning?